49 research outputs found

    The neuro-cognitive representation of word meaning resolved in space and time.

    Get PDF
    One of the core human abilities is that of interpreting symbols. Prompted with a perceptual stimulus devoid of any intrinsic meaning, such as a written word, our brain can access a complex multidimensional representation, called semantic representation, which corresponds to its meaning. Notwithstanding decades of neuropsychological and neuroimaging work on the cognitive and neural substrate of semantic representations, many questions are left unanswered. The research in this dissertation attempts to unravel one of them: are the neural substrates of different components of concrete word meaning dissociated? In the first part, I review the different theoretical positions and empirical findings on the cognitive and neural correlates of semantic representations. I highlight how recent methodological advances, namely the introduction of multivariate methods for the analysis of distributed patterns of brain activity, broaden the set of hypotheses that can be empirically tested. In particular, they allow the exploration of the representational geometries of different brain areas, which is instrumental to the understanding of where and when the various dimensions of the semantic space are activated in the brain. Crucially, I propose an operational distinction between motor-perceptual dimensions (i.e., those attributes of the objects referred to by the words that are perceived through the senses) and conceptual ones (i.e., the information that is built via a complex integration of multiple perceptual features). In the second part, I present the results of the studies I conducted in order to investigate the automaticity of retrieval, topographical organization, and temporal dynamics of motor-perceptual and conceptual dimensions of word meaning. First, I show how the representational spaces retrieved with different behavioral and corpora-based methods (i.e., Semantic Distance Judgment, Semantic Feature Listing, WordNet) appear to be highly correlated and overall consistent within and across subjects. Second, I present the results of four priming experiments suggesting that perceptual dimensions of word meaning (such as implied real world size and sound) are recovered in an automatic but task-dependent way during reading. Third, thanks to a functional magnetic resonance imaging experiment, I show a representational shift along the ventral visual path: from perceptual features, preferentially encoded in primary visual areas, to conceptual ones, preferentially encoded in mid and anterior temporal areas. This result indicates that complementary dimensions of the semantic space are encoded in a distributed yet partially dissociated way across the cortex. Fourth, by means of a study conducted with magnetoencephalography, I present evidence of an early (around 200 ms after stimulus onset) simultaneous access to both motor-perceptual and conceptual dimensions of the semantic space thanks to different aspects of the signal: inter-trial phase coherence appears to be key for the encoding of perceptual while spectral power changes appear to support encoding of conceptual dimensions. These observations suggest that the neural substrates of different components of symbol meaning can be dissociated in terms of localization and of the feature of the signal encoding them, while sharing a similar temporal evolution

    The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data

    Get PDF
    Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere

    Impact des ions zinc et cuivre dans la cascade amyloïde liée à la maladie d'Alzheimer

    No full text
    La maladie d'Alzheimer (MA) est une maladie neurodégénérative. Elle représente entre 60-80 % des cas de démence et touche autour de 47 millions de personnes à travers le monde. Deux types de lésions morphologiques de la MA ont été identifiés post mortem : les enchevêtrements neurofibrillaires intra-neuronaux de protéine Tau hyperphosphorylée et les plaques séniles. Les plaques séniles, ou plaques amyloïdes, se forment dans l'espace extracellulaire entre les fentes synaptiques et empêchent les connexions neuronales. Le composant principal de ces plaques est le peptide Amyloïde-ß (Aß) agrégé. Une hypothèse concernant cette maladie propose une mauvaise régulation des ions métalliques, telles que Zn et Cu, et une accumulation de Aß. Cette hypothèse est appelée hypothèse de la cascade amyloïde. Dans cette hypothèse le peptide Aß monomérique, présent aussi dans les cerveaux sains, agrège d'abord en formes oligomériques, puis en fibres, qui vont ensuite constituer les plaques amyloïdes. Il est proposé que le zinc stabilise davantage les fibres et le cuivre les formes oligomériques. Ces formes présentent une grande toxicité liée à la production d'Espèces Réactives de l'Oxygène (ERO), en présence d'un réducteur tel que l'ascorbate. Ces espèces oxydantes sont délétères pour les molécules environnantes. Pour mieux comprendre comment les ions Zn(II) et Cu(II) vont moduler ou induire l'agrégation, leur impact est étudié en comparaison avec le peptide Amyloïde-ß murin (mAß). En effet, les rats et les souris partagent ce peptide et ne développent pas la MA. Le mAß diffère du Aß humain (hAß) par seulement 3 acides aminés sur les 40-42 acides aminés qui constituent la séquence hAß. Pour cette raison, une étude de l'impact de la différence de coordination des ions Zn(II) et Cu(II) au sein des deux peptides sur l'agrégation et la morphologie des agrégats est ici menée. Ceci a pour objectif d'aider une meilleure compréhension de la cascade amyloïde. La deuxième partie de cette thèse se focalise sur la production d'ERO. Jusqu'à récemment, les études étaient focalisées sur les peptides Aß1-n (n=16/28/40/42). Celui ici, en présence des ions cuivre, de dioxygène et d'ascorbate va produire des ERO. Cependant, il est démontré qu'une forte quantité de formes tronquées en position N-terminale du Aß (en particulier Aß4-n et Aß11-n) se trouvent dans les cerveaux post mortem des malades d'Alzheimer. Ces deux peptides présentent un site de coordination pour le Cu(II) de type ATCUN, qui peut donc coordonner fortement les ions Cu(II). Il est donc intéressant d'étudier leur capacité à produire des ERO et/ou capacité à en arrêter la production. Enfin, l'impact du Zn(II) sur la production d'ERO par les complexes AßCu a été évalué, car la concentration en Zn dans les fentes synaptiques est environ 100 fois plus grande que celle en Cu.Alzheimer's disease (AD) is a neurodegenerative disease and it represents the 60-80 % of the dementia cases. It touched around 47 million people worldwide. Two hallmarks of AD were identified in post mortem brain: the intracellular neurofibrillary tangles of hyperphosphorylated Tau protein and the amyloid (or senile) plaques. The amyloid plaques are formed in the extracellular space in the synaptic cleft. These aggregates would prevent the neuronal connections. The major component of the senile plaques is the aggregated Amyloid-ß (Aß) peptide. An hypothesis concerning this disease proposed a metal ions dyshomeostasis and an accumulation of Aß. This hypothesis is called amyloid cascade hypothesis. According to this hypothesis, the monomeric Aß peptide, present also in the healthy brains, aggregates into dimer, trimer... and more generally into oligomers; and then into fibers, which constitute the amyloid plaques. It is considered that zinc ions stabilize the fibers and copper ions the oligomeric forms. These forms present a high toxicity linked to the production of Reactive Oxygen Species (ROS), in the presence of dioxygen and a reducing agent such as ascorbate. These oxidants species are toxic for the surrounding molecules. To better understand how Zn(II) and Cu(II), modulate and/or induce the aggregation of the Aß peptide, their impact was studied and compared to the murine amyloid-ß (mAß) peptide. Indeed, rats and mice share this peptide and do not develop AD. mAß peptide differs from the human (hAß) peptide at 3 only positions on the 40-42 amino acids which constitute the hAß sequence. For this reason, a study of the impact of the different Zn(II) and Cu(II) coordination on the aggregation and on the morphology of aggregates of both peptides was performed. This aims at helping to better describe amyloid cascade hypothesis. The second part of this thesis focuses on ROS production. Until recently, the studies were focused on the peptides Aß1-n (n=16 / 28 / 40 / 42). These peptides in presence of copper ions, O2 and ascorbate produce ROS. However, a high amount of N-truncated Aß peptides, in particular Aß4-n and Aß11-n, was found post mortem in AD brains. These two peptides have an ATCUN coordination site, which strongly coordinates the Cu(II). It is interesting to study their ability to produce or stop ROS production. Finally, the impact of the Zn(II) in the ROS production of AßCu complexes is evaluated. Indeed, the concentration of Zn in the synaptic cleft is around 100 times more than Cu

    La représentation neuro-cognitive du sens du mot résolu dans l'espace et dans le temps

    No full text
    One of the core human abilities is that of interpreting symbols. Notwithstanding decades of neuropsychological and neuroimaging work on the cognitive and neural substrate of semantic representations, many questions are left unanswered. The research in this dissertation attempts to unravel one of them: are the neural substrates of different components of concrete word meaning dissociated? In the first part, I review the different theoretical positions and empirical findings on the cognitive and neural correlates of semantic representations. Crucially, I propose an operational distinction between motor-perceptual dimensions (i.e., those attributes of the objects referred to by the words that are perceived through the senses) and conceptual ones (i.e., the information that is built via a complex integration of multiple perceptual features). In the second part, I present the results of the studies I conducted in order to investigate the automaticity of retrieval, topographical organization, and temporal dynamics of motor-perceptual and conceptual dimensions of word meaning. The results suggest that the neural substrates of different components of symbol meaning can be dissociated in terms of localization and of the feature of the signal encoding them, while sharing a similar temporal evolution.L'une des capacités humaines fondamentales est la capacité d'interpréter des symboles. Malgré plusieurs décennies de travaux en neuropsychologique et neuroimagerie sur le substrat cognitif et neuronal des représentations sémantiques, de nombreuses questions restent sans réponse. Les présents travaux de thèse tentent de démêler l'un de ces mystères: les substrats neuronaux des différentes composantes du mot sont-ils dissociables? Ce travail comporte deux composantes principales : l'une théorique et l'autre empirique. Dans la première partie, nous passons en revue les différentes positions théoriques concernant les corrélats cognitifs et neuraux des représentations sémantiques. De plus, nous proposons une distinction opérationnelle entre les dimensions moto-perceptives (c'est-à-dire les attributs des objets auxquels les mots se réfèrent perçus par les sens) et conceptuelles (c'est-à-dire l'information construite par l'intégration des multiples caractéristiques perceptives). Dans la deuxième partie, nous présentons les résultats des études menées afin d'étudier l'automaticité de la récupération, l'organisation topographique et la dynamique temporelle des dimensions moto-perceptives et conceptuelles de la signification des mots. Tout en contribuant à notre compréhension de la manière dont le sens des mots est codé dans le cerveau, les travaux présentés dans cette thèse ont des implications méthodologiques et théoriques importantes. En particulier, ils soulignent l'importance d'une intégration fructueuse entre les théories cognitives et les méthodes statistiques avancées afin d'éclairer les mystères entourant les représentations sémantiques

    Effects of zinc and copper ions in the amyloid cascade linked to Alzheimer's disease

    No full text
    La maladie d'Alzheimer (MA) est une maladie neurodégénérative. Elle représente entre 60-80 % des cas de démence et touche autour de 47 millions de personnes à travers le monde. Deux types de lésions morphologiques de la MA ont été identifiés post mortem : les enchevêtrements neurofibrillaires intra-neuronaux de protéine Tau hyperphosphorylée et les plaques séniles. Les plaques séniles, ou plaques amyloïdes, se forment dans l'espace extracellulaire entre les fentes synaptiques et empêchent les connexions neuronales. Le composant principal de ces plaques est le peptide Amyloïde-ß (Aß) agrégé. Une hypothèse concernant cette maladie propose une mauvaise régulation des ions métalliques, telles que Zn et Cu, et une accumulation de Aß. Cette hypothèse est appelée hypothèse de la cascade amyloïde. Dans cette hypothèse le peptide Aß monomérique, présent aussi dans les cerveaux sains, agrège d'abord en formes oligomériques, puis en fibres, qui vont ensuite constituer les plaques amyloïdes. Il est proposé que le zinc stabilise davantage les fibres et le cuivre les formes oligomériques. Ces formes présentent une grande toxicité liée à la production d'Espèces Réactives de l'Oxygène (ERO), en présence d'un réducteur tel que l'ascorbate. Ces espèces oxydantes sont délétères pour les molécules environnantes. Pour mieux comprendre comment les ions Zn(II) et Cu(II) vont moduler ou induire l'agrégation, leur impact est étudié en comparaison avec le peptide Amyloïde-ß murin (mAß). En effet, les rats et les souris partagent ce peptide et ne développent pas la MA. Le mAß diffère du Aß humain (hAß) par seulement 3 acides aminés sur les 40-42 acides aminés qui constituent la séquence hAß. Pour cette raison, une étude de l'impact de la différence de coordination des ions Zn(II) et Cu(II) au sein des deux peptides sur l'agrégation et la morphologie des agrégats est ici menée. Ceci a pour objectif d'aider une meilleure compréhension de la cascade amyloïde. La deuxième partie de cette thèse se focalise sur la production d'ERO. Jusqu'à récemment, les études étaient focalisées sur les peptides Aß1-n (n=16/28/40/42). Celui ici, en présence des ions cuivre, de dioxygène et d'ascorbate va produire des ERO. Cependant, il est démontré qu'une forte quantité de formes tronquées en position N-terminale du Aß (en particulier Aß4-n et Aß11-n) se trouvent dans les cerveaux post mortem des malades d'Alzheimer. Ces deux peptides présentent un site de coordination pour le Cu(II) de type ATCUN, qui peut donc coordonner fortement les ions Cu(II). Il est donc intéressant d'étudier leur capacité à produire des ERO et/ou capacité à en arrêter la production. Enfin, l'impact du Zn(II) sur la production d'ERO par les complexes AßCu a été évalué, car la concentration en Zn dans les fentes synaptiques est environ 100 fois plus grande que celle en Cu.Alzheimer's disease (AD) is a neurodegenerative disease and it represents the 60-80 % of the dementia cases. It touched around 47 million people worldwide. Two hallmarks of AD were identified in post mortem brain: the intracellular neurofibrillary tangles of hyperphosphorylated Tau protein and the amyloid (or senile) plaques. The amyloid plaques are formed in the extracellular space in the synaptic cleft. These aggregates would prevent the neuronal connections. The major component of the senile plaques is the aggregated Amyloid-ß (Aß) peptide. An hypothesis concerning this disease proposed a metal ions dyshomeostasis and an accumulation of Aß. This hypothesis is called amyloid cascade hypothesis. According to this hypothesis, the monomeric Aß peptide, present also in the healthy brains, aggregates into dimer, trimer... and more generally into oligomers; and then into fibers, which constitute the amyloid plaques. It is considered that zinc ions stabilize the fibers and copper ions the oligomeric forms. These forms present a high toxicity linked to the production of Reactive Oxygen Species (ROS), in the presence of dioxygen and a reducing agent such as ascorbate. These oxidants species are toxic for the surrounding molecules. To better understand how Zn(II) and Cu(II), modulate and/or induce the aggregation of the Aß peptide, their impact was studied and compared to the murine amyloid-ß (mAß) peptide. Indeed, rats and mice share this peptide and do not develop AD. mAß peptide differs from the human (hAß) peptide at 3 only positions on the 40-42 amino acids which constitute the hAß sequence. For this reason, a study of the impact of the different Zn(II) and Cu(II) coordination on the aggregation and on the morphology of aggregates of both peptides was performed. This aims at helping to better describe amyloid cascade hypothesis. The second part of this thesis focuses on ROS production. Until recently, the studies were focused on the peptides Aß1-n (n=16 / 28 / 40 / 42). These peptides in presence of copper ions, O2 and ascorbate produce ROS. However, a high amount of N-truncated Aß peptides, in particular Aß4-n and Aß11-n, was found post mortem in AD brains. These two peptides have an ATCUN coordination site, which strongly coordinates the Cu(II). It is interesting to study their ability to produce or stop ROS production. Finally, the impact of the Zn(II) in the ROS production of AßCu complexes is evaluated. Indeed, the concentration of Zn in the synaptic cleft is around 100 times more than Cu
    corecore